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Cosmological evidence 
is the only positive 
confirmation of DM 
we currently have!

What we know about  
dark matter: 
 - Long lifetime 
 - No EM charge 
 - Specific relic density 

What we don’t know: 
 - Mass 
 - How it connects to  
the Standard Model

Most matter is “dark matter”
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Indirect  
detection

IceCube, 
Super-K, …

Direct detection: LUX, XENON, …

Colliders

ATLAS 
& CMS

If there is some interaction with the Standard Model, at a moderate energy 
scale, → then we should be able to produce DM at the LHC!

Looking for dark matter with experiments
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Where is the new physics?

• We know it’s out there  

• So why haven’t we seen it yet? A couple possible reasons: 

1. It is above the scale accessible by the LHC 

2. It isn’t where we have been looking 

• In case 1, not much we can do about it. But we have all the 
power in case 2! Need to understand where else to look.
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• Basic t-channel simplified model 

• Only relevant couplings active 

• Best limit at any mass reported 

• There is still lots of room for dark 
matter, just in more complicated 
scenarios!
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SM Some mediator DM

How to get the right amount of dark matter in the universe

Freeze-out scenarios: 
lots of DM in the early 

universe, decouples once 
temperature drops 

enough
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What if we’ve been thinking too simplistically?
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Freeze-in scenarios: no DM in 
early universe, mediator and SM 
in equilibrium. DM sector slowly 

populated via very small 
coupling to mediator.

SM Some mediator DM

How to get the right amount of dark matter in the universe

Still gets you the right relic density
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Small couplings
e.g. SM lepton 
flavour violation

tiny
μ → eγ BR < 1e-13

arXiv:1312.0634

https://arxiv.org/pdf/1312.0634.pdf
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e.g. SM lepton 
flavour violation

K0S → ππ    
K0L → πππ 
Mass of K0 just a bit larger  
than mass of three pions 
Lifetime 9e-11 s versus 5e-8 s
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Small couplings
e.g. our DM 

simplified model

Becomes long-lived 
when λ’’ is very small
Becomes long-lived 
when λ’’ is very small
Becomes long-lived 
when λ’’ is very small
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Limited phase 
space

e.g. AMSB-style  
pure Wino LSP

Small couplings
e.g. our DM 

simplified model

mχ̃±
1

∼ mχ̃0
1

arXiv:1712.02118

https://arxiv.org/pdf/1712.02118.pdf


Long lifetimes and where to find them
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Limited phase 
space

e.g. AMSB-style  
pure Wino LSP

Small couplings
e.g. our DM 

simplified model

Decays via     
heavy particle 

e.g.  heavy 
neutrinos

super off-shell
arXiv:1805.05084

https://arxiv.org/abs/1805.05084
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Measuring particles in the ATLAS detector
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Tracker

ECAL
HCAL

Muon 
spectrometer
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Measuring particles in the ATLAS detector
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MET
MET corresponds to an 
un-measurable particle 
(ν, LSP, dark matter,…)



Connecting lifetime to location

• cτ = simple distance metric. Order 30cm for τ = 1 nanosecond 

• Lorentz boost βγ = p/M. Ranges from ~ 0.8 or 0.9 for really heavy particles to ~30 for 
really light ones. 

• What distance travelled counts as “displaced” varies with the resolution of the detector 
system being used! 

• Tracker d0 and z0 resolution ~0.02-0.1 mm while ECal pointing resolution ~50 mm 

• Timing resolution also relevant for some subsystems/searches  

• Combining all these factors, no simple definition of what is displaced
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• What distance travelled counts as “displaced” varies with the resolution of the detector 
system being used! 

• Tracker d0 and z0 resolution ~0.02-0.1 mm while ECal pointing resolution ~50 mm 

• Timing resolution also relevant for some subsystems/searches  

• Combining all these factors, no simple definition of what is displaced
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Mean distance travelled = βγcτ

Values of τ ~ 10-13 to 10-7 seconds are “long-lived particles”
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Where should we look for particle decays?

19

Mean distance travelled = βγcτ

3.3—56 cm 1.15—2.25 m 2.3—4.2 m 4.7—10 m

Particle decay is exponential: 
Mean distance is here-ish

But a smaller 
volume of inner 

detector …

More decays close to 
collision point

What if decay 
rate looks like 

this?



Different detector systems for different targets

• Lighter particles have higher βγ and so travel farther for the same lifetime 

• Muon spectrometer becomes useful for Higgs-portal-style signatures 

• For target masses > order 100 GeV (i.e. EW SUSY), inner detector is critical
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How do we use our detectors for these searches?

21

Tracking EM 
showers

Hadronic 
showers

Stable charged 
particles (muons)

Collision 
point

Indirect detection: 
neutral LLP

Observable decay 
products

For heavy LLPs, can 
use timing as well



What would new long-lived physics look like?
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What would new long-lived physics look like?
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Inspired by 

Heather Russell

disappearing 
tracks

(meta-)stable 
charged 
particles

stopped 
particles

displaced vertex 
in association with 

MET, jets, …

Higgs-
mediated DM

displaced 
leptons
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What makes LLPs so hard?

23

Triggering

Electrons?? Trigger unsure

Large-radius tracking

Standard tracking will miss it, 
LRT is slow and bulky

Data flow

RAW
Standard

LLP reconstruction
Event filtering Analysis
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Triggering and long-lived particles

24

Trigger needs to be fast

L1 uses only 
information from 

muons and 
calorimeters: 
fast to collect  
and analyse

High level trigger 
can add very 
limited tracking

If particles don’t come 
from the collision, the 
limited tracking will 

miss them

If signature 
is just a 

track, out 
of luck!

Easiest to use: 
- loose trigger 
- something else in 

event



Understanding backgrounds

• Long-lived particle searches often have small and/or unusual backgrounds 
due to ~no simple Standard Model processes imitating signatures 

• Sources of remaining backgrounds LLP searches include: 

• Cosmic muons 

• Mis-reconstructed SM objects (fake tracks, pileup contamination, ….) 

• Material interactions within detector components 

• Occasionally, even beam-induced backgrounds and cavern backgrounds 

• For almost all background contributions, no possibility of simulating them well 

• So you will see fully data-driven background estimates for ~all LLP searches!
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A direct detection example: pixel dEdx analysis
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A direct detection example: pixel dEdx analysis

26

For a relativistic particle, β = v/c, γ = E/m, βγ = p/M
Energy deposited via ionisation = dE/dx ∝ ln(β2γ2)/β2 (Bethe Bloch)

→ Ionisation energy connects momentum to mass

Distinct curves 
separate different 

masses of 
particles

New heavy 
charged 

particle could 
be out here!

Phys. Lett. B 788 (2019) 96

https://www.sciencedirect.com/science/article/pii/S0370269318308268
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Event selection in the dEdx analysis

• LLP is heavy: moves slowly and 
leaves more ionisation energy 

• High momentum compared to 
SM backgrounds

27

g̃

g̃
p

p

�̃0
1

q

q

�̃0
1

q

q

Long lived particle
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• LLP is heavy: moves slowly and 
leaves more ionisation energy 

• High momentum compared to 
SM backgrounds
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Event selection in the dEdx analysis

• LLP is heavy: moves slowly and 
leaves more ionisation energy 

• High momentum compared to 
SM backgrounds

27

Selection: missing momentum in event, high 
momentum track with large dE/dx

• What to trigger on? Likely to 
miss track, no reliable objects 

• Use missing momentum to 
trigger
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Backgrounds in the dEdx search

• Missing momentum is 
independent of track dEdx 

• Use control regions with low 
missing momentum to predict SM 
backgrounds 

• Convert prediction from p and 
dEdx to most likely particle mass

28

dE
/d

x

Momentum

Ionisation is a distribution: 
There are always tails with SM 
particles at high p and dEdx

How do we 
predict tails?



dEdx latest results and current status
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Limits from dEdx

30

arXiv:2004.00636

dEdx constrains 
dark matter models! 
Above, recent 
reinterpretation
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Disappearing track analysis

• Pure wino LSP scenarios naturally predicts a      lifetime around 0.2 ns 

• Signature: track that vanishes midway through inner detector 

• Similar to dEdx, commonly reinterpreted (including covering key range in pure-Higgsino LSP)

arXiv:1712.02118

χ̃±
1

https://arxiv.org/abs/1712.02118


Disappearing tracks

• Trigger: missing energy 

• Backgrounds:  

• Real hadrons & leptons that 
dramatically change direction 
(bremsstrahlung, material 
interactions, multiple scattering)  

• Fake tracklets made from mis-
associated hits 

• Extract templates in control regions 
and perform fit in signal regions to get 
normalisations
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Indirect detection example:  
displaced leptons

• Search for two light leptons (3 SRs: ee, μμ, eμ) not 
originating from the collision point 

• Requires special “large radius” tracking for 
displaced objects, customised electron and muon 
identification
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Backgrounds to displaced leptons

• Cosmic ray muons 

• “Fake” electrons: track mis-
associated to calorimeter energy 
deposit 

• Heavy-flavour decays

Main backgrounds 1) Remove:
angle Any muon back-to-

back with another 
muon/muon 

spectrometer hits
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Why LLP searches are the right target for Run 3

• When we decide to do any search, must consider a couple factors:  

• We should look somewhere important 

• Motivated by theory: we already know LLPs are strongly motivated in many 
BSM models 

• We should look somewhere effective 

• Look for targets which will benefit most from increasing datasets 

• Find opportunities where the LHC dataset and our technical abilities give us 
the most power, so work invested will yield better results 

• Prioritise “discovery potential”! 

• LLPs are a great candidate for effectiveness as well
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Rule of thumb: with high backgrounds, sensitivity 𝒮 ≈ s/ b

s, b ∝ ℒ 𝒮 ∝ ℒ, therefore

Need 4x the data to double the analysis reach!

For LLP analyses, cuts can always be tuned to keep ~zero 
background events while keeping some signal acceptance

Upper limit on 0 events is ~3 

𝒮 ∝ ℒCross section limit is ~3/   , therefore ℒ
LLP analyses benefit most from larger datasets!
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Improving track reconstruction

• Large-radius tracking (LRT) is 
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• Can only run it on pre-selected 
subset of events - missing some
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Improving track reconstruction

• Large-radius tracking (LRT) is 
slow and produces many “fake” 
tracks 

• Can only run it on pre-selected 
subset of events - missing some
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• Thanks to recent updates, LRT 
faster and produces fewer fakes 

• Improvements offline & online

LHC Run 3



Better data flow

• Due to size of large-radius tracking output, was impossible to run on all events 

• Filtering step used information in standard reconstruction to pick events which 
would be processed with LRT - essentially acts as a second trigger with signal 
efficiency < 1 

• Removing fakes reduced LRT output size so that no filters needed in Run 3 

• Result: increased acceptance for every analysis using large-radius 
tracking; corresponding sensitivity increase

40
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New triggers to extend ATLAS LLP search reach
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• Tracking at high-level trigger only for “standard” tracks and in regions 
of interest  

• Extending HLT tracking to full event in all jet and MET signatures  

• Introducing large-radius tracking in specific regions of interest (in 
progress)
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New triggers to extend ATLAS LLP search reach

41

With standard tracking in full event:

With large-radius tracking:
Reconstruct non-prompt 
tracks (displaced leptons)

• Tracking at high-level trigger only for “standard” tracks and in regions 
of interest  

• Extending HLT tracking to full event in all jet and MET signatures  

• Introducing large-radius tracking in specific regions of interest (in 
progress)

Run 2

Run 3



Reinterpretations

42

323
,,λ

400
600
800

1000
1200
1400
1600
1800
2000
2200
2400

) [
G

eV
]

1t~
m

(

 n
s

2
 =

 1
0

τ

 n
s

-2
 =

 1
0

τ

 n
s

-3
 =

 1
0

τ

 n
s

0
 =

 1
0

τ

 n
s

1
 =

 1
0

τ

 n
s

-1
 =

 1
0

τ

bs
)=

95
%

→ 1t~
BR

(

bs
)=

25
%

→ 1t~
BR

(

bs
)=

75
%

→ 1t~
BR

(

bs
)=

50
%

→ 1t~
BR

(

bs
)=

5%
→ 1t~

BR
(

RPC

Fo
rb

id
de

n 
by

 R
G

E:
 P

hy
s.

 R
ev

. D
60

 (1
99

9)
 0

56
00

2

)-1RPC Stop 0L (36.1 fb
)-1RPC Stop 1L (36.1 fb

)-1RPV 1L (36.1 fb
)-1), TLA (3.2 fb-1Dijet (37 fb

)-1Dijet pairs (36.7 fb

ATLAS  Preliminary

4−10 3−10 2−10 1−10 1

1

0
χ∼)=200 GeV, bino-like 

1

0
χ∼bs, m(→t~tbs) / →(

1

0
χ∼t→t~RPC-RPV Combination: 

=13 TeVs
Expected
Observed

95% CL limits

This should be 
covered by displaced 
vertex+jets analysis



Reinterpretations

42

323
,,λ

400
600
800

1000
1200
1400
1600
1800
2000
2200
2400

) [
G

eV
]

1t~
m

(

 n
s

2
 =

 1
0

τ

 n
s

-2
 =

 1
0

τ

 n
s

-3
 =

 1
0

τ

 n
s

0
 =

 1
0

τ

 n
s

1
 =

 1
0

τ

 n
s

-1
 =

 1
0

τ

bs
)=

95
%

→ 1t~
BR

(

bs
)=

25
%

→ 1t~
BR

(

bs
)=

75
%

→ 1t~
BR

(

bs
)=

50
%

→ 1t~
BR

(

bs
)=

5%
→ 1t~

BR
(

RPC

Fo
rb

id
de

n 
by

 R
G

E:
 P

hy
s.

 R
ev

. D
60

 (1
99

9)
 0

56
00

2

)-1RPC Stop 0L (36.1 fb
)-1RPC Stop 1L (36.1 fb

)-1RPV 1L (36.1 fb
)-1), TLA (3.2 fb-1Dijet (37 fb

)-1Dijet pairs (36.7 fb

ATLAS  Preliminary

4−10 3−10 2−10 1−10 1

1

0
χ∼)=200 GeV, bino-like 

1

0
χ∼bs, m(→t~tbs) / →(

1

0
χ∼t→t~RPC-RPV Combination: 

=13 TeVs
Expected
Observed

95% CL limits

This should be 
covered by displaced 
vertex+jets analysis

So why is there no 
line in the plot?



Reinterpretations

42

323
,,λ

400
600
800

1000
1200
1400
1600
1800
2000
2200
2400

) [
G

eV
]

1t~
m

(

 n
s

2
 =

 1
0

τ

 n
s

-2
 =

 1
0

τ

 n
s

-3
 =

 1
0

τ

 n
s

0
 =

 1
0

τ

 n
s

1
 =

 1
0

τ

 n
s

-1
 =

 1
0

τ

bs
)=

95
%

→ 1t~
BR

(

bs
)=

25
%

→ 1t~
BR

(

bs
)=

75
%

→ 1t~
BR

(

bs
)=

50
%

→ 1t~
BR

(

bs
)=

5%
→ 1t~

BR
(

RPC

Fo
rb

id
de

n 
by

 R
G

E:
 P

hy
s.

 R
ev

. D
60

 (1
99

9)
 0

56
00

2

)-1RPC Stop 0L (36.1 fb
)-1RPC Stop 1L (36.1 fb

)-1RPV 1L (36.1 fb
)-1), TLA (3.2 fb-1Dijet (37 fb

)-1Dijet pairs (36.7 fb

ATLAS  Preliminary

4−10 3−10 2−10 1−10 1

1

0
χ∼)=200 GeV, bino-like 

1

0
χ∼bs, m(→t~tbs) / →(

1

0
χ∼t→t~RPC-RPV Combination: 

=13 TeVs
Expected
Observed

95% CL limits

This should be 
covered by displaced 
vertex+jets analysis

So why is there no 
line in the plot?

• Testing new interpretations for LLP searches can be tricky after the fact! 

• This is one of our key points for improvement. Internally, new framework for code 
preservation allowing easy re-running within the collaboration 

• What about for external users? Continually looking for improved ways to make our 
results useful - let us know any suggestions!
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Long lived particles …

→ belong naturally in tons of BSM models

→ can help explain where dark matter is

→ fill holes in search coverage

In Run 3, LLPs will …

→ benefit from technical advances

→ improve ~linearly with data collected

Stay tuned (or join in) for exciting results!

→ give us new opportunities for discovery
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Further trigger info for displaced leptons

• Triggers for electrons: HLT_g140_loose, HLT_2g50_loose, 
HLT_2g50_loose_L12EM20VH  

• L1 requirements: pT 2x20 with no isolation or 1x24 with isolation ending at 
50 GeV 

• “Loose” at HLT: defined based on shower shape variables, leakage into 
HCal, energy distribution [ref.] 

• Triggers for muons: HLT_mu60_0eta105_msonly  

• L1 requirements: no isolation on candidate, 20 GeV pT. Some built-in 
pointing requirements which start to harm efficiency at high d0 (200ish) 

• HLT requirements: central (|η| < 1.05) track in muon spectrometer, pT > 60, 
no requirement for an associated inner detector track
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https://arxiv.org/pdf/1606.01813.pdf


dEdx measurements in the ATLAS tracker

• Pixel: up to 5 hits (depending on layer overlap), use a truncated 
mean to define the dEdx used in the analysis 

• SCT: outputs essentially binary information. Some preliminary studies 
in 2015 demonstrate it’s potentially possible to extract dEdx 
equivalent information though with much worse resolution than we 
have in pixels. At present no plans to use this. 

• TRT: does provide dEdx measurements, but have not been 
calibrated or explored by the analysis team. This has been used by 
other ATLAS analyses though. 

• Constraints for use in analysis: would require new dedicated 
calibration, and could only be used for stable particle exclusions

46



LHC: energies and datasets
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LHC: energies and datasets

• Amount of data collected: “luminosity” 

• Measure in “inverse femtobarns”: more fb-1 = more data
47

2010 2016 20192013 2022 2025

Run 1
High luminosity 

LHC era
LS 1 

No data Run 2
LS 2 

No data Run 3

Two key factors: amount of data collected 
and collision centre of mass energy

• Center of mass energy: “TeV” 

• Higher energy = higher rate of interesting processes

8 TeV 13 TeV 13 TeV (?) 14 TeV



Indirect detection example: 
Displaced vertices + a muon
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radius” tracking for muons and 
tracks in DV 

• Cosmic muon background 
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MS activity is opposite muon
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Improving analysis targeting

• LLP analyses fairly simple at this point and target signals not 
necessarily most important for Run 3 

• dEdx: optimise for lighter signals; add two-track signal region to 
improve targeting of SUSY-specific models 

• Disappearing track: attempting to target even shorter lifetimes 

• Displaced leptons: optimise directly for staus, focusing on 
lowering lepton pT threshold, add 1 displaced lepton + 1 tau SR 

• In general: move away from long-lived squarks/gluinos and 
target direct EWK production instead

50
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Lepton coupling, L-violating LLE: λ
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Leptons and jets, L-violating LQD: λ’

• Couple quarks to leptons and neutrinos: get LSP 
decay to jets and l/ν 

• Small λ’: long-lived N1 leads to displaced jets; 
coverage from DV analyses 

• Medium λ’: multijets and lepton or significant MET. 
Constraints from multijet 0L, EW 3L (not shown 
today), stop B-L (discussed already), multijet 1L 
(see next section) at present 53
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Note different 
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What about dark matter in RPV?

• Gravitino takes over as most likely dark matter candidate 

• RPV would allow its decay, but proportionally to 
gravitational coupling, and thus the lifetime is really really 
long

55
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Compressed region: decay 
via off-shell W, identify very 

soft leptons

VERY compressed: chargino 
becomes long-lived, search 

via disappearing track:
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What about here?
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What about here?

NO sensitivity with current 
searches! 

Ideas proposed by Tokyo team to 
fill the gap (1910.08065) 

Analysis in early stages; I intend to 
participate 

https://arxiv.org/abs/1910.08065


Why standard searches don’t suffice
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What is a trigger?

58

ATLAS Detector

L1 Trigger

High level trigger

Data leaves detector at 40 MHz: 
way more than we can 

process and store!

Hardware L1 trigger reduces 
flow to 100 kHz

A perfect drop of physics!

Software HLT passes 
~1 kHz: 40,000 x less



More dEdx: R-hadrons

• Long lived squark or gluino results in R-hadron. Charged fraction 
hypothesized ~20% 

• R-hadron interacts minimally with calorimeter (think very high pT pion) - 
missing energy signature 

• Case where stable charged particle not necessarily going to do better at long 
lifetimes: charge flipping can occur as R-hadron collects & deposits quarks in 
calorimeter. Can have ID track and nothing in the MS
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Cosmic ray vetos

• ~70% of cosmic events in ATLAS reconstructed as two muons. 
Remainder are missing top half (timing identified as backward-going). 

• In these cases, use muon spectrometer hits to check opposite a 
reconstructed muon 

• Use direction from spectrometer hits to do matching, rather than 
η/φ w.r.t. origin 

• Additional veto for cases where incoming muon would have passed 
through non-instrumented slice at η=0 

• Efficiency for eliminating cosmics = 99.7% as tested in cosmic run
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How does track reconstruction work? ATLAS

• Inside-out tracking (ATLAS primary) 

• Find seeds (pixel detector only) using 3-hit 
groups.  

• Extend seeds to strips detector layers with 
combinatorial Kalman filter 

• Assess track candidates: χ2, number of 
holes, number of shared hits, etc. Throw 
away suboptimal ones 

• Extend to TRT 

• Refit with all points to get best track 
parameters

61
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Next: outside-in starts from 
TRT seeds and extrapolates 
backwards. Both restrict 
candidates to near PV.
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What’s a Kalman filter?

• “Linear quadratic 
estimation”. Algorithm 
which uses set of points to 
predict next point in the set 
using joint probability 
distribution of those already 
observed. 

• Prediction step, then once 
next point is added, taken 
into account and probability 
distribution adjusted.

62
B. Jones, B. Tompkins 

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.57.1034&rep=rep1&type=pdf


Large-radius tracking in ATLAS

63

• After inside-out and outside-
in standard tracking, leftover 
points can now be used for 
second-pass tracking

High efficiency, high fake rate

ATL-PHYS-PUB-2017-014 

• Sequential Kalman filter. Otherwise 
much the same as standard 
tracking but with loosened z0 and 
d0 requirements

https://cds.cern.ch/record/2275635/files/ATL-PHYS-PUB-2017-014.pdf
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Large radius tracking and ATLAS data flow

• LRT is slow and has a high fake rate: can not run in 
default reconstruction 

• Instead, define filters based on standard reconstruction to 
identify some fraction of events (currently ~10%) 

• These events are separately reconstructed from RAW with 
all machinery of interest to long lived particle searches 

• Get to keep all tracks selected by LRT, but need to 
sacrifice some events to keep rates low. Adds a trigger-
like layer of inefficiency to analyses requiring LRT

64



Large-radius tracking in CMS

• Large radius tracking run as part 
of standard reconstruction in 
CMS 

• Tracking in 4 steps (seeding, 
track finding, fitting, selecting 
good tracks) repeated many 
times with loosening restrictions. 
Each pass, used points are 
removed 

• This reduces combinatorics for 
next pass. Large-radius tracks 
allowed as late iterations.
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ATLAS track triggers in Run 3

• Cancellation of FTK project means need to find an alternative form of pileup 
suppression in Run 3  

• Proposal: full-scan tracking above some pT threshold (TBD) for events passing 
jet or MET L1 trigger 

• This allows rejection of pileup jet triggered events and more accurate MET 

• Tracking in trigger runs within ROIs: even full scan. Identify ROI, use modified 
fast tracking (different seed finding, fast Kalman filter) to get initial candidates. 
Offline ambiguity solver produces precision tracks. Probably sacrifice precision 
tracks in Run 3. 

• Tracking in trigger is an opportunity for LLPs - can use MET or jet L1 to seed 
custom trigger - but it is also a hazard: rejection of jets with tracks not 
associated to PV could kill displaced signals. Studies ongoing.
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ATLAS track trigger in Runs 4-5

• HTT (hardware track trigger) current plan but up in the air: details will depend 
on readout speed of ITk components. 

• Pattern matching in AM chips 

• First and second stage tracking done by FPGAs 

• L1Track: 4 MHz rate, can fit tracks with pT > 4 GeV. First stage fit only, happens 
in ROI. Can be done on ~10% of detector. 

• Global HTT: Second stage (HLT) tracking to be done in full detector using 
similar associative memory pattern matching. Can run on ~10% of events as 
requested by Event Filter 

• Option to replace global HTT with CPUs if performance and computing budget 
seem comparable
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CMS track trigger in Runs 4-5

• Hardware level at run 1: “stubs” in outer tracker 

• Assume we have a track originating from beam and passing through two 
closely spaced tracking layers. Pass if two hits + beamline compatible with 
high pT track 

• FPGA-based second stage will extend stubs into track candidates. Two 
algorithms being tested, so far similar performance: extending stubs 
geometrically into tracklets, or Hough transforms + Kalman filters. 

• Software at HLT 

• Moving to GPUs allows many-thread processing 

• New algorithms plus smart data formatting/accessing tunes for GPUs make 
most efficient use of it
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MIP timing detector

• Resolution ~30 ps in timing and ~3mm in z direction 

• Barrel coverage (ATLAS only has forward coverage with HGTD): 
therefore can use for centrally produced LLPs 

• Lutetium-yttrium orthosilicate crystals (LYSO) + silicon photomultipliers

69

CERN-LHCC-2015-010 
CERN-LHCC-2017-027 

https://cds.cern.ch/record/2020886
https://cds.cern.ch/record/2296612?ln=en


Beyond CMS and ATLAS

• Long lived neutral particle can only be seen via decay products 

• As long as we can get full efficiency and zero background with 
our detector, always better to search closer to collision point 

• But when a signal has low trigger efficiency (due to low mass or 
high pileup) or high backgrounds this is really difficult
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out here
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trigger on lower masses

Put a detector volume 
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reconstruct signal tracks!
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Why we need a dedicated LLP experiment

71

ATLAS/CMS

Lots of options for location, 
shape, can deliver similar 

sensitivity

As long as there is enough 
decay volume and solid 
angle coverage, can get 

interesting results!



Example: MATHUSLA

MATHUSLA is a leading proposal today, with long lifetime 
reach and the bonus opportunity to study cosmic ray showers

72

• Above-ground detector 
uses plastic scintillators 

• Decay volume 20 m 
deep 

• Several tracking layers 
above, one triggering 
layer below
(arXiv:1811.00927, arXiv:1901.04040)

https://arxiv.org/abs/1811.00927
https://arxiv.org/abs/1901.04040


FASER

• FASER experiment now approved by LHCC and moving forward! Only 
approved dedicated LLP search at LHC. 

• Downstream 480m from ATLAS, specialises in sub-GeV signals (e.g. dark 
photons) 

• Very light signals are produced along the beamline, as opposed to 
heavier particles which are produced centrally 

• Can have a tiny experiment: just 10cm diameter by 5 m long 

• Triggering/veto layer, empty decay volume, then 3 tracking layers and an EM 
calorimeter

73

J. Feng, I. Galon, F. Kling, S. Trojanowski

Note on dark photons: generic term for neutral vector particle which has 
some interaction with SM fermions (e.g. kinetic mixing). Considered to 

have a nonzero but very small mass (viable DM candidate)

P. Agrawal et al
M. Raggi, V. Kozhuharov

https://arxiv.org/abs/1708.09389
http://www.apple.com/uk
http://inspirehep.net/record/1414155/files/fulltext.pdf


MATHUSLA

• Design: nominally 100x100x20 m  

• Modular; can easily scale up or down as needed to fit budget 

• Location near CMS site, already discussed 

• Technology likely plastic scintillator + SiPM: RPCs considered but gas 
+ high voltage too inconvenient/dangerous 

• Cosmic ray backgrounds challenging: down-going easy to veto, but 
splash back (albedo) requires more work 

• However, opportunity for measuring with fine granularity incoming 
cosmic ray showers also. Physics case document in progress for this.
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MATHUSLA @ European Strategy 
MATHUSLA LOI

http://www.apple.com/uk
https://arxiv.org/abs/1811.00927


MATHUSLA, FASER, SHiP, etc

• So many models one could compare in that any specific interpretation would 
appear biased 

• However, can roughly group proposals by type: forward/light and off-axis/
heavier. One of each is complementary but more than one per category is not 
necessary
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CODEX-b EOI

https://arxiv.org/pdf/1911.00481.pdf


CODEX-b

• Off-axis experiment 25m from LHCb interaction point, volume ~ 
10x10x10 m 

• Existing chamber near LHCb where remains of DELPHI currently sit: 
old detector could be removed for extra space 

• Detector design options: 6 layers 
of RPCs, option for scintillator-
based calorimetry. 

• Add shielding between LHCb and 
experiment 

• Initial tests of detector tech already 
completed
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CODEX-b EOI

https://arxiv.org/pdf/1911.00481.pdf


AL3X

• ALICE has no current plans for Run 5, when LHC heavy ion program 
likely finished 

• AL3X would reuse portions of ALICE detector (particularly time projection 
chamber and L3 magnet) for a LLP search program during Run 5 

• Requires modified IP: move it 
downstream by ~11 m and deliver 
higher luminosity (100 fb-1). Add 
additional shielding between IP 
and experiment 

• Experiment affordable; cost of 
moving IP to be determined

77

V. Gligorov, S. Knapen, B. Nachman, M. 
Papucci, D. Robinson

https://journals.aps.org/prd/abstract/10.1103/PhysRevD.99.015023
https://journals.aps.org/prd/abstract/10.1103/PhysRevD.99.015023


ANUBIS

• Instrument ATLAS access shaft with 
removable layers of tracking detector 
(RPCs) in order to use shaft as decay 
volume 

• Close enough to integrate with ATLAS 
beam crossing information 

• 18m vertical depth and 18m diameter. 
Four equally spaced tracking stations 

• Coverage comparable to CODEX-b in 
lifetime and depth 

• Budget ~ 10M euros
78

M. Bauer, O. Brandt, L. Lee, C. Ohm

https://arxiv.org/abs/1909.13022


New LLP detector design 
finalisation, tests, building, 
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New experiment taking data!
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